

Applying Innovative AI Techniques for Automatic Emotion

Recognition

Prof. Dr: Mohamed Sayed Kayed Prof. Dr: Ibrahim El-Desouky

Dr: Safynaz Abdul-Fattah

Contents

01 Introduction 05 Thesis Objectives

02 Problem Statement 06 Contributions

03 Motivation07 Proposed Model

04 Literature Review 08 Evaluation

09 Research Plan

Introduction

- Emotion recognition technology can identify human emotions from text and speech but faces challenges like ambiguous language and limited data.
- Advancements in language processing and machine learning are key to overcoming these obstacles.
- Subsequentially, emotion recognition has the potential to improve many fields like <u>healthcare</u>, education, and customer service.

Problem Statement

Current emotion recognition systems face challenges due to the:

- Complexity of human emotions.
- Lack of diverse training data.
- Limiting their accuracy and application in fields like healthcare and education.

Motivation

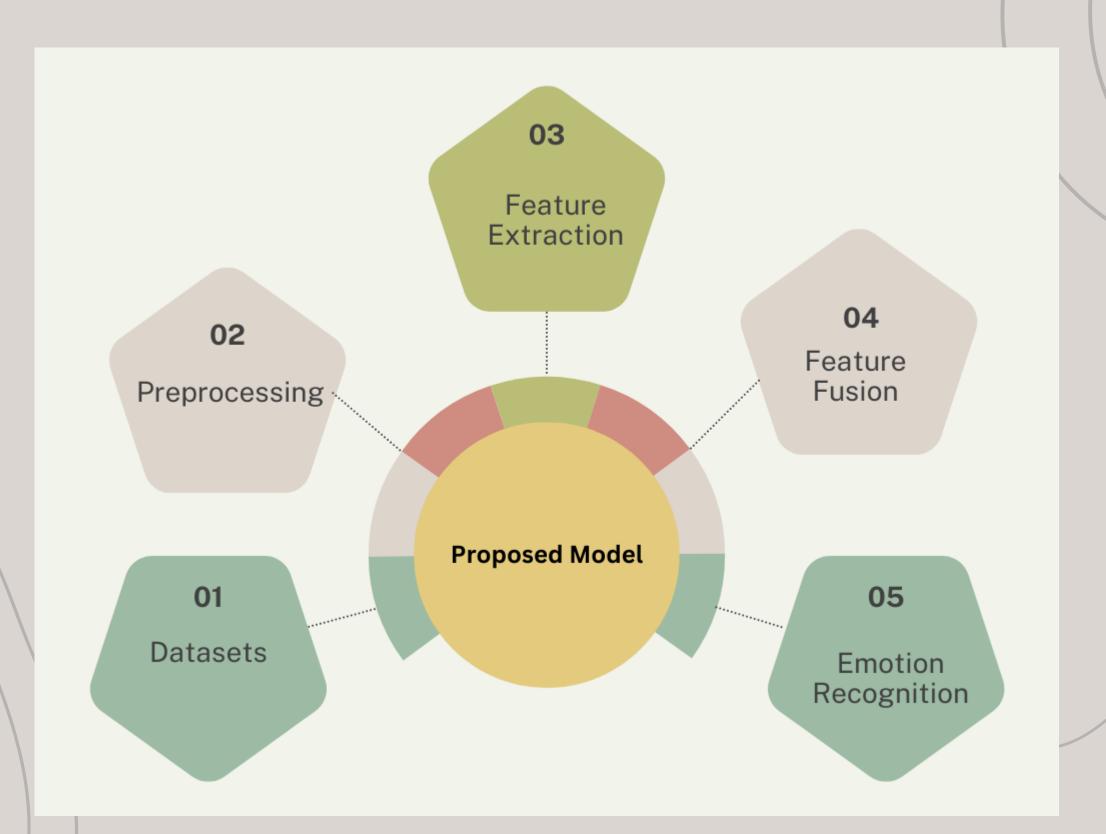
This thesis aims to applying cutting-edge methodologies to improve emotion recognition problem by developing more accurate models based on diverse datasets for enhancing human-computer interaction.

Literature Review

Model	Dataset-Type	Results	Language	Publication Year
SVM	Arabic Sentiment Analysis Dataset. (Text)	97.12%	Arabic	2024
ANN	Arabic and English (Text)	73.4%	Arabic, English	2024
GPT-4	English Text	86.7%	English	2024
Transformer-based LLM (Typecast)	English Speech	66.6%	English	2024
CNN	English Speech	99.89%	English	2023
LanSER	English Speech	58.7%	English	2023
Wav2vec2.0	Arabic Speech	89%	Arabic	2021
KNN	Arabic Text	84.02%	Arabic	2020

Thesis Objectives

The aim of this proposed model is to enhance the accuracy of emotion recognition systems by:


- Exploring and evaluating various solutions.
- Developing robust models.
- Utilizing diverse datasets.
- · Conducting comprehensive data analysis and integration.
- Providing more reliable and effective tools.

Contributions

The thesis contribution will be:

- Using heterogenous datasets such as: Text and Speech.
- Using different languages.
- Building robust model based on new technologies like Generative-AI, LLMs, and deep learning.

Proposed Model

1. Dataset

Name	Туре	Language	Classes	No. of records
IEMOCAP	Speech	English	4	5,531
CREMA-D	Speech	English	6	7,442
RAVDESS	Speech	English	8	1,440
EYASE	Speech	Arabic	5	162
BAVED	Speech	Arabic	5	1,935
AraSenti Tweet	Text	Arabic	4	17,573
Semantic	Text	English	3	63,817
Evaluation		Arabic		3,497
EmoReact	Text	English	17	1,102
GoEmotions	Text	English	27	58,000

2. Preprocessing

According to text:

- 1. Tokenization
- 2. Stop word removal
- 3. Stemming/Lemmatization
- 4. Normalization

2. Preprocessing

According to speech:

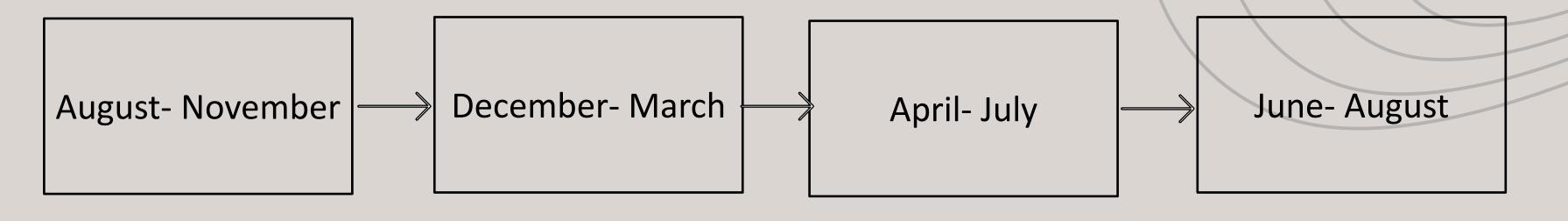
- 1. Noise Reduction
- 2. Voice Activity Detection (VAD)
- 3. Normalization

3. Feature Extraction

- According to text:
 - Use pre-trained models for word embedding.
- •According to speech:
 - MFCCs.
 - Prosodic Features.
 - Spectral Features.

4. Feature Fusion

- 1. Concatenation.
- 2. Attention Mechanisms.


5. Emotion Recognition

 Train a model to recognize emotions using combined features by experimenting different AI techniques like: Transformers, LLMs, and deep learning.

Evaluation

- 1. For obtaining robust model we will evaluate the proposed model by different measurements like accuracy, precision, F1-score, and ROC-Curve.
- 2. Fine-tune the model for improving results.

Literature Review and Surv Research Proposal

Survey and Gathering

Experiment

Apply to the case study

Thank You